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Abstract. In a previous paper we introduced a path integral technique based on birth and 
death processes. The method provides an analogue of the Feynman-Kac formula which 
is associated to the Hamiltonian semigroups of some boson systems. In the present work 
we briefly demonstrate this technique in a general form. Furthermore, we study a simple 
spin-boson model for which we obtain some estimates on ground-state energy and spin-flip 
rate. 

1. Introduction 

The motivation of this paper is to demonstrate a probabilistic technique which is useful 
for studying systems described by Hamiltonians of the following form 

H = wa+a + A ( a + a +) +f( a + a )  (1) 

where a+ and a are the ordinary creation and annihilation operators andf is a function 
of the product a'a. One sees immediately that it is not possible to associate an ordinary 
Feynnan-Kac formula to the Hamiltonian semigroup (cIo+ e-IH(cIo. The reason is that 
the Hamiltonian (1) contains, in general, powers of the momentum p = ( i / d ) (  a+ - a )  
higher than two and, therefore, the Schrodinger equation in configuration-space does 
not have a heat-like structure. Nevertheless it is possible to have a very natural 
probabilistic formula associated to the Hamiltonian semigroup which uses birth and 
death processes. 

In the first part of this paper we derive the formula and we show some general 
properties of it. In the second we demonstrate our technique with an application to 
a simple spin-boson model for which we obtain some estimates on ground-state energy 
and spin-flip rate. 

2. The formula 

Consider the Hamiltonian ( 1  ); the associated imaginary time Schrodinger equation in 
occupation number representation is (we assume in this paper, without loss of general- 
ity, w = 1 and A real) 

d 
- + , ( n ) = - H + , ( n ) =  d t  - n l l / , ( n ) - A ~ + , ( n + l ) - A ~ c L , ( n  - l ) - f ( r~)(cI , (n)  ( 2 )  

t Supported by 'Consiglio Nazionale delle Ricerche'. 
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where n is the integer which represents the occupation number. Perform now the 
transformation $ , ( n ) - . d , ( n )  = $ , ( n ) / Q ( n )  with n(n)= ( - A ) " / @  Note that n(n) is 
the ground-state wavefunction of the Schrodinger equation where f( n )  = 0. The new 
function satisfies 

d 
- 4,(  n )  = - ( A  + n )4 , (  n ) + A ?4,( H + 1 ) + n4,( n - 1 ) - ~ f ( n )  - A ' ) 4 ~ n )  
d t  

L 4 , ( n ) - ( f ( n ) - A 2 ) 4 , ( n ) .  (3)  
It is easy to realise that L is the generator of a birth and death process N, with death 
rate equal to N, and birth rate equal to A ', while Cf( n) - A ') plays the role of a potential. 
We remark that this process has been extensively studied (see for example [31]) and 
the associated transition probability is known. 

As a consequence of the Trotter product formula one has 

where the expectation is taken with respect to the process which starts in n at time 0. 
This is our  analogue of the Feynman-Kac formula [ l ,  21 (see the appendix for a 
heuristic derivation). 

Furthermore, taking into account the definition of 4 , ( n )  one sees that 

which is the simple probabilistic solution of equation ( 2 ) .  
We remark that it is possible to rewrite the solution (4) (as well as (5 ) )  in the form 

where A( i )  is any strictly positive function of positive integers, and N :  is a new process 
for which A ' / [ A ( N : +  l ) ]  is the death rate and  N : A ( N : )  the birth rate. The reason 
why it is possible to rewrite (4) in this form is a consequence of the fact that the 
expression in the second line of (6) is the Radon-Nikodym derivative of the measure 
of the process N with respect to the process N '  (see the appendix). Formula (6) is a 
useful starting point for approximate calculations of many physical quantities. 

We also remark that the ground-state energy Eo of Hamiltonian (1) is given by 

1 
E,  = lim - - log pn ( t ) 

1-x t 

where 

( 7 )  
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which is easy to verify. The expectation in the numerator of (8) is, in fact, the imaginary 
time transition probability amplitude from n to n (i t  can be obtained from ( 5 )  by 
considering an initial function $o( m )  = 6 (  m - n)) .  I t  is well known that this amplitude 
can be written as ~ ~ = , ~ $ , ( n ) l ' e x p { - E , r }  where the $, are the eigenfunctions of the 
Hamiltonian (1)  and the E, are the relative energies. Therefore, since the expression 
in the denominator tends to a constant (the equilibrium probability of finding the 
process in n )  when t is large, the equality ( 7 )  is verified. 

In a probabilistic language pn( t )  is simply the expectation of the exponential 
function with the condition No= N I  = n; this is the meaning of the notation in the 
second line of (8).  

Combining the above definition with the statement (8) we also obtain 

where the expectation is also conditioned by Nb = N :  = n. Note that the rate of products 
which is contained in formula (6) has disappeared since it is, by definition, equal to 
1 over trajectories which start and end in the same point. 

3. An application 

We discuss now the possible applications of the formulae which we have introduced 
by means of a simple (but non-trivial) example. Consider the Hamiltonian 

H = U + U  + AmZ( a + U ' )  + I E I U , ~  (10) 

which describes a single spin interacting with a vibration mode. There is a vast literature 
on this subject; we just mention [4] where it has been studied in connection with a 
highly simplified description of an elastic magnetic crystal. Furthermore, related models 
(with, in general, many vibrational modes) have been considered in many other physical 
contexts, for example in solid state physics in order to model the Kondo problem (see 
for example [ 5 ] )  and for the Dicke model of the maser (see for example [6]), or even 
to describe quantum tunnelling in presence of an interaction with the surrounding (see 
for example [7]). The method of this paper can be easily adapted to these more 
complicated situations but in this paper we simply consider the 'toy' Hamiltonian (10) 
since it captures the most important physical features of this class of models. 

Looking at ( l o ) ,  we remark that le1 is a positive parameter which represents the 
bare spin-flip (tunnelling) rate of the two-state system. We also remark that there is 
a conserved quantity; the operator U = ( - l ) a ' o m ,  commutes, in fact, with the Hamil- 
tonian. 

After having performed a unitary transformation of the Hamiltonian which also 
transforms the commuting operator U in a 'c' number we have 

H = a ' a + A ( a + a + ) + a / E I ( - l ) ' + a  ( 1 1 )  

where m can be * l .  Now the Hamiltonian has the form (1) and, having defined 
E = ~ 1 ~ 1 ,  we can write 

1 
Eo = Eo( E, A ) = lim - - log( ex p{ - E lo1 ( - 1 ) Nr d s  + A 'I}) . 

1-x t n 
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For any choice of the parameters A and I E ~  we must consider both energies E ’ =  
E,(*lsl, A )  since they are the lowest energies corresponding to the two values * l  of 
U. E -  is the ground-state energy of (10) since it is lower than E’ [4] and J = E + -  E -  
is the effective spin-flip rate. 

Expression (12) is the starting point of many estimates of physically relevant 
quantities. Let us start with the obvious remark that the spin-flip rate J is smaller than 
the bare one E. From (12),  taking into account that -1  s ( - l ) ’v>  < 1 ,  one has in fact 
the bounds 

- A’-lel S E - <  E + <  - A 2 +  1 ~ 1 .  (13 )  

Another bound can be obtained by (12) through the Jensen inequality 

E,< - A ‘ + &  lim (: lof ( - I )  d s )  = - A 2 + &  e-”’. 
f -m  n 

The above expectation is easily calculated because the transition probability of the 
process is known. 

One can improve (14) by using the Jensen inequality together with (9); one has in 
this case 

where N ‘  is the process defined in (6). The inequality holds for any choice of the 
positive trial function A( m ) ;  for example, A( m )  = A = constant produces 

which is a more accurate bound than (13 ) .  Other trial functions A ( m )  could be 
considered together with the Jensen inequality, but this is beyond the scope of this 
paper which essentially illustrates the possible uses of the proposed probabilistic 
method. 

Formula (9)  is useful in other contexts than the Jensen inequality, as may be seen 
through a n  example. For any even m define A( m )  = 1 and A( m + 1) solution of 

From (9) it turns out that 

min,R( m )  < Eo< max,R( m )  

with R(  m )  = G( m + 1 )  when m even, R (  m )  = G (  m )  when m odd and  G( m + 1 )  defined 
as 

+ E 2 - & ( m + l - A ’ )  . (19) 1 G ( m + l ) =  m +  1 - - A 2 -  [ ( , * + ~ + l ) ~  
2 
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It is easy to check that R (  m )  is a decreasing function of m when E 6 0 and it is an 
increasing function when 0 S E ;  therefore (see (18)) we obtain 

where the equalities hold for every I C / .  An obvious consequence is 

which gives a realistic estimate of spin-flip rate for small coupling A. 

4. Some more estimates 

Simple probabilistic reasoning generates other bounds. Consider again ( 12) and take 
n = 0; since the function in the expectation is positive one has that po( t )  is larger than 
the value obtained considering only a smaller number of realisations. For example, 
the probability that a trajectory which starts in 0 always remains in 0 during the time 
interval t is equal to exp(-A2t) (the rate of exit from 0 is A’) while the function in 
the expectation takes the value exp(-er + A 2 t )  for this trajectory. One has therefore 

po( t )  3 exp(-A’t) exp( - E ?  + A’t)  + Eo< E.  (22) 

If we repeat the reasoning for pl( t )  and we consider the trajectories which start in 1 
and which remain there during the time interval t we obtain 

(23) 

where we have used the fact that the rate of exit from 1 is A ’ + 1 .  Inequalities (16) 
and (17) together lead to 

p l ( t ) 3 e x p ( - A 2 t +  t )  exp(er + A 2 t ) +  Eo< - E +  1 

E - s  - / E l  E’+- I I E l  --+I. (24) 

We remark that the above upper bounds are the ground-state energies of Hamiltonian 
(9) when A = 0 and therefore we conclude that the coupling has always the effect of 
lowering the ground-state energies. 

Similar probabilistic arguments can be also applied to the expression (15). The 
probability that a trajectory which starts and ends in n always remains in the sites n 
and n + 1 is larger than exp[-A’t/A(n +2)  - nA(n)r]. To be convinced of this fact it 
is sufficient to remember that nA(n) is the rate for n + 1 and A’/A(n +2)  is the rate 
for n + 1 + n +2. Furthermore, choosing A(n + 1) solution of 

it turns out that the function in the expectation of (15), for these trajectories which 
always remain in n and n + 1, is larger than 

(26) exp{ - T( n)} = exp{-( n + 4)  + [ ( ( - I ) “& -i)2 + ~ ’ ( n  + 1 
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and therefore following the same reasoning as before we have 

Since we can make A( n )  as small as we want and  A( n + 2) as large as we want, we obtain 

Eo< min,T( n). (28) 
For the positive E and  small values of A, the above upper bound combined with 

the lower bound (20) implies EO(&, A )  - EO(&, 0) - A’ when E # and Eo( E ,  A )  - 
Eo(&, 0) - A when E = $. On the other hand, from (20) and (24), also it turns out that 
the derivative of EO(&, A )  with respect to E is discontinuous in E =f when A = 0. In 
conclusion, the derivatives of the ground-state energy Eo( E ,  A )  (which can be interpreted 
as the free energy of a statistical model for a one-dimensional spin system with 
continuous index) are both discontinuous in E = 4 when A = 0. 

We remark, as a final comment, that it is straightforward to extend the technique 
which we have proposed here to Hamiltonians of many oscillators. In this more general 
case a different process will be associated with any oscillator. 

P,,( t )  3 exp{-A’t/A(n + 2 )  - nA( n ) t }  exp{ - T (  n)}. (27) 
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Appendix 

In this appendix we give an  heuristic proof of formulae (4) and (6). 
We first prove formula (4) showing that it is a solution of the equation (3) with 

initial conditions &( n). We start by rewriting the formula (4) for a larger time t + d t :  

In writing the second equality we have used a decomposition of the trajectories in two 
parts; one goes from time 0 to time dt, the other from d t  to t +dt .  The first expectation 
in the second line concerns the process N, when 0 s  s s d t  while the second is the 
conditional expectation with respect to N ,  when d t  S s S t + d t  and  when N d r  is fixed 
at time dt. We are now able to compute the first expectation up  to the first order in 
d t  and we obtain 

r+dr 

4 r+dr (n )=(A2  d f ) E n + l , d r [  & d N f + d f )  exP{ ldl [ A 2 - f ( N s ) ]  ds}] 

x ( 1 + ( A  ’ - f (  n ) )  d t  ) 
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where we have used the fact that Nd, equals n + 1 with probability A' d t  and equals 
n - 1 with probability 1 - A 2  d t  - n d t .  Since the process is homogeneous in time we 
can rewrite this equality as 

x ( l + ( A * - f ( n ) )  d t )  ('43) 

from which equation (3) immediately follows. 
We prove now formula (6) showing that the expression 

('44) 

is the Radon-Nikodym derivative of the measure of the process N with respect to the 
process N'  (where N and N'  are the processes previously defined). It will be sufficient 
to show that 

is equal to the transition probability from n to m associated with the process N. The 
function S (  m - n )  is the usual Kronecker delta. For t = 0 this is trivially verified; 
therefore it will be sufficient to show that the expression above satisfies the equation 
(d/dt)p,  = Lp,,  where L is the generator associated with the process N. 

The proof is similar to the previous one; we start again by decomposing the 
trajectories in two parts and we obtain 

Pr+dr(% m ) = E n , O  

x [ (5 1 = 1  A ( i ) ) (  r = l  fi A ( i ) ) - ' ] ) .  

In order to compute the first expectation up to the first order in d t  we must remember 
that N &  equals n + 1 with probability A '  d t / [ A ( n  + l)] ,  equals n - 1 with probability 
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nA( n )  dt  and equals n + 1 with probability 1 - A 2  d t /A(  n + 1)  - nA( n )  d t .  W e  easily 
obtain 

A'dt 
A ( n + l )  

p , (  n + 1, m ) A (  n + 1) + nA( n )  dt  p , (  n - 1, m ) / A (  n )  Pl+dl(n, m )  = 

+ n A ( n )  dr) 

A'dt 
i- (' - A ( n  + 1) 

A'dt 
A ( n + l )  

l - A * d t - n d t +  

from which the equation (dldt jp ,  = Lp, immediately follows. 
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